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Abstract
We give a combinatorial characterization of upward planar graphs in terms of upward
planar orders, which are special linear extensions of edge posets.
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1 Introduction

A planar drawing of a directed graph is upward if all edges increase monotonically
in the vertical direction (or other fixed direction). A directed graph is called upward
planar if it admits an upward planar drawing; see Fig. 1 for example. Clearly, an
upward planar graph is necessarily acyclic. A directed graph together with an upward
planar drawing is called an upward plane graph. They are commonly used to represent
hierarchical structures, such as PERT networks, Hasse diagrams, family trees, etc., and
have been extensively studied in the fields of graph theory, graph drawing algorithms,
and ordered set theory (see, e.g., [5] for a review).

A first simple characterization of upward planarity was given independently by Di
Battista and Tamassia [3] and Kelly [8]. They characterized upward planar graphs as
spanning subgraphs of planar st graphs, as shown in Fig. 2, where a planar st graph is a
directed planar graph with exactly one source s, exactly one sink t , and a distinguished
edge e connecting s, t .
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Fig. 1 An upward planar graph
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Fig. 2 A planar st graph with the graph in Fig. 1 as spanning subgraph

Another fundamental characterization of upward planar graphs was given in [1,2]
by means of bimodal planar drawings [5] and consistent assignments of sources and
sinks to faces. Aware of these elegant and important combinatorial characterizations,
in this paper, we will study upward planarity in a different approach.

The notion of a processive plane graph (called a PPG for short, see Definition 2.1)
was introduced in [6] as a graphical tool for tensor calculus in semi-groupal categories.
It turns out that a PPG is essentially equivalent to an upward plane st graph, as shown
in Fig. 3.

The notion of a progressive plane graph, with that of a PPG as a special case, was
introduced by Joyal and Street in [7] as a graphical tool for tensor calculus in monoidal
categories. Similar to the above characterization of Di Battista and Tamassia [3] and
Kelly [8], any progressive plane graph can be extended (in a non-unique way) to a
PPG, as shown in Fig. 4. It is clear that a progressive plane graph is essentially an
upward planar graph (possibly with isolated vertices).

One main result in [6] is that a PPG can be characterized in terms of the notion
of a planar order, which is a special linear extension of the edge poset (short for
partially ordered set) of the underlying directed graph (Theorem 2.5). Based on and to
generalize this result, we will give a similar characterization of upward planar graphs.
Precisely, we introduce the notion of an upward planar order (Definition 3.1) for an
acyclic directed graph G, which is a generalization of that of a planar order, and show
that G is upward planar if and only if it has an upward planar order (Theorem 6.1).
We summarize the conceptual framework as follows.
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Fig. 3 A PPG and its associated upward plane st graph

Fig. 4 A progressive plane graph and one of its PPG-extentions

Category theory Graph theory Combinatorial characterization
PPG Upward plane st graph Planar order
Progressive plane graph Upward plane graph Upward planar order

To prove our main result, Theorem 6.1, we put in much effort to analyze the rela-
tionship between the notion of a planar order and that of an upward planar order
(Theorem 4.6) and especially introduce the notion of a canonical processive planar
extension (CPP extension for short, Definition 5.1), which is the crucial link between
our combinatorial characterization of PPGs and that of upward plane graphs. Our
strategy of justifying our characterization of upward planar graphs by means of CPP
extensions and combinatorial characterization of processive plane graphs is a combi-
natorial formulation of PPG-extensions of progressive plane graphs and in a sense, a
refinement of the work of Di Battista and Tamassia [3] and Kelly [8].

One advantage of our approach to study upward planarity is that it admits a com-
position theory of upward planar orders just as that of planar orders in [6], which
provides a practical way to compute an associated upward planar order of an upward
plane graph. The composition theory will be presented elsewhere. Another advantage
is that our characterization sheds some light on the long-standing problem [9,10] of
finding a topological theory of posets (parallel to topological graph theory) which
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Fig. 5 A directed graph which is
not upward planar but with
linear genus zero
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should generalize upward planarity to higher genus surfaces. Observe that any linear
extension of the edge poset of a connected acyclic directed graph G naturally induces
a rotation system on G, or a cellular embedding of G on a surface, whose genus is
called the linear genus of the linear extension. The linear genus of G is defined as the
minimal linear genus of linear extensions of the edge poset of G. Our characterization
means that G is upward planar implying that the linear genus of G is zero. However,
the converse is not true; see Fig. 5.

It would be interesting to find possible relations between the aforementioned theory
of linear genus and the higher genus theory of upward planarity proposed in [6], which
is based on the graphical calculus for symmetric monoidal categories (Chapter 2 of
[7]). Yet another interesting fact is that the axioms in the definition of an upward
planar order can be restated as axioms for hypergraphs, or in other words, the notion
of an upward planar order makes sense for hypergraphs. These directions are worth
studying in the future.

The paper is organized as follows. In Sect. 2, we review the combinatorial char-
acterization of PPGs in [6]. In Sect. 3, we introduce the notions of an upward planar
order and a UPO-graph and study their basic properties. In Sect. 4, we give several
new characterizations of PPGs. In Sect. 5, we introduce the notion of a CPP extension
for an acyclic directed graph G. We show that there is a natural bijection between
upward planar orders on G and CPP extensions of G. In Sect. 6, we justify the notion
of a UPO-graph by showing that a UPO-graph has a unique upward planar drawing
up to planar isotopy, and conversely, there is at least one upward planar order for any
upward plane graph. We point out that our characterization of upward planarity can
also be applied to characterize (non-directed) planar graphs.

2 PPG and POP-Graph

In this section, we recall the notion of a PPG and its combinatorial characterization.

Definition 2.1 A processive plane graph, or PPG, is an acyclic directed graph drawn
in a plane box such that (1) all edges monotonically decrease in the vertical direction;
(2) all sources and sinks are of degree one; and (3) all sources and sinks are drawn on
the horizontal boundaries of the plane box.

The left of Fig. 3 shows an example. The following notion characterizes the under-
lying graph of a PPG.
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Fig. 6 Polarization of a vertex

Definition 2.2 A processive graph is an acyclic directed graph with all sources and
sinks being of degree one.

Clearly, this notion is essentially equivalent to that of a PERT-graph [11] which
is a directed graph with exactly one source s and exactly one sink t (the underlying
graph in Fig. 5 is an example), and also equivalent to that of an st graph which is a
PERT-graph with a distinguished edge e connecting s and t (the underlying directed
graph in the right of Fig. 3 is an example).

A vertex is called processive if it is neither a source nor a sink. An edge of a
processive graph is called an input edge if it starts from a source and output edge if it
ends with a sink. We denote the set of input edges of a processive graph G by I (G)

and the set of output edges by O(G).
A planar drawing of a processive graph G is boxed if it is drawn in a plane box

with all sources of G on one of the horizontal boundaries of the plane box and all
sinks of G on the other one. From the left of Fig. 3, it is easy to see that a PPG is a
boxed and upward planar drawing of a processive graph. Two PPGs are equivalent if
they are connected by a planar isotopy such that each intermediate planar drawing is
boxed (but not necessarily upward).

For a vertex v of a directed graph G, a polarization [7] of v consists of two linear
orders, one on the set IG(v) (or I(v) for simplicity) of incoming edges of v and the
other on the set OG(v) (or O(v) for simplicity) of outgoing edges of v (possibly one
of them is empty). A directed graph is called polarized if each vertex is equipped with
a polarization. In the way shown in Fig. 6, PPGs and general upward plane graphs are
polarized.

The following is a key notion in [6].

Definition 2.3 A planar order on a processive graph G is a linear order ≺ on the edge
set E(G), such that

(P1) e1 → e2 implies that e1 ≺ e2;
(P2) if e1 ≺ e2 ≺ e3 and e1 → e3, then either e1 → e2 or e2 → e3,

where e1 → e2 denotes that there is a directed path starting from e1 and ending with
e2.

Figure 7 shows a simple example motivating the definition. By the linearity of ≺, it
is easy to see that (P2) is equivalent to (˜P2): If e1 ≺ e2 ≺ e3 and t(e1) = s(e3), then
either e1 → e2 or e2 → e3, where s(e), t(e) denote the starting and ending vertex of
edge e, respectively.

Definition 2.4 A processive graph together with a planar order is called a planarly
ordered processive graph or POP-graph for short.
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Fig. 7 A planar order 1 2 3 4
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Fig. 8 A POP-graph
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The following is a key result in [6].

Theorem 2.5 There is a bijection between POP-graphs and equivalence classes of
PPGs.

Figure 8 shows the corresponding POP-graph of the PPG in the left of Fig. 3.

3 UPO–Graph

In this section, we introduce the key notion in this paper, that is, the notion of a
UPO-graph and show some of its basic properties.

We first introduce some notations. Let S be a finite set with a linear order <. Given
a subset X ⊆ S, we write X− = min X and X+ = max X . The convex hull of X in S
is X = {y ∈ S|X− ≤ y ≤ X+}.
Definition 3.1 An upward planar order on a directed graph G is a linear order ≺ on
E(G), such that

(U1) e1 → e2 implies that e1 ≺ e2;
(U2) for any vertex v, I (v) ∩ O(v) = ∅ and E(v) = I (v) 	 O(v);
(U3) for any two vertices v1 and v2, I (v1) ∩ I (v2) 
= ∅ implies that I (v1) ⊆ I (v2),

and O(v1) ∩ O(v2) 
= ∅ implies that O(v1) ⊆ O(v2).

Figure 9 is a typical example motivating this definition.

Definition 3.2 A directed graph together with an upward planar order is called an
upward planarly ordered graph or UPO–graph for short.

Any UPO–graph must be acyclic. Obviously, (U1) = (P1), say ≺ is a linear exten-
sion of →. (U2), under (U1), is equivalent to O(v)− = I (v)+ + 1 (with respect to ≺)
for any processive vertex v.

The following lemma is an easy consequence of (U3).
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Fig. 9 An upward planar order

Lemma 3.3 Let G be an acyclic directed graph, ≺ a linear order on E(G), and v1
and v2 be two vertices of G. If ≺ satisfies (U3), then

(1) I (v1) ∩ I (v2) 
= ∅ implies that either I (v1) ⊆ I (v2) or I (v2) ⊆ I (v1).
(2) O(v1) ∩ O(v2) 
= ∅ implies that either O(v1) ⊆ O(v2) or O(v2) ⊆ O(v1).

Proof Weonly prove (1). The proof of (2) is similar. Both I (v1) and I (v2) are intervals
of (E(G),≺), then I (v1)∩ I (v2) 
= ∅ implies that either I (v1)+ ∈ I (v2) or I (v2)+ ∈
I (v1). In the former case, notice that I (v1)+ ∈ I (v1), so I (v1) ∩ I (v2) 
= ∅. By (U3),
I (v1) ⊂ I (v2). Similarly, in the latter case, I (v2) ⊂ I (v1). �	

An embedding of directed graphs φ : G1 → G2 consists of a pair of injections
φ0 : V (G1) → V (G2) and φ1 : E(G1) → E(G2), such that s(φ1(e)) = φ0(s(e))
and t(φ1(e)) = φ0(t(e)) for any e ∈ E(G1). In this case, G1 is called a subgraph
of G2. We freely identify the vertices and edges of G1 with their images and view
V (G1) ⊆ V (G2), E(G1) ⊆ E(G2).

The following proposition shows that (U1) and (U3) are hereditary.

Proposition 3.4 Let G be an acyclic directed graph with a linear order ≺ on E(G),
H a subgraph of G and ≺H the linear order on E(H) induced from ≺. Then,

(1) ≺ satisfies (U1) implying that ≺H satisfies (U1).
(2) ≺ satisfies (U3) implying that ≺H satisfies (U3).

Proof (1) is a direct consequence of the facts that for e1, e2 ∈ E(H), e1 → e2 in H
if and only if e1 → e2 in G, and that e1 ≺H e2 if and only if e1 ≺ e2.

Now we prove (2) by contradiction. Suppose there exist v1, v2 ∈ V (H), such that
IH (v1) ∩ IH (v2) 
= ∅ and IH (v1) � IH (v2). On the one hand, IH (v1) ∩ IH (v2) 
= ∅
implies that IG(v1) ∩ IG(v2) 
= ∅, then by (U3) of ≺, IG(v1) ⊆ IG(v2).

On the other hand, we must have IG(v2) ⊆ IG(v1). In fact, IH (v1) ∩ IH (v2) 
= ∅
means that there is an edge e ∈ IH (v1) such that IH (v2)

− 
H e 
H IH (v2)
+, and

IH (v1) � IH (v2) means that there is an edge h ∈ IH (v1) such that h ≺H IH (v2)
−

or IH (v2)
+ ≺H h. In the former case, IH (v2)

− ∈ [h, e] ⊆ IH (v1). In the latter case,
IH (v2)

+ ∈ [e, h] ⊆ IH (v1). So in both cases, IH (v2) ∩ IH (v1) 
= ∅, and hence
IG(v2) ∩ IG(v1) 
= ∅. Then, by (U3) of ≺, IG(v2) ⊆ IG(v1).

In summary, IG(v1) = IG(v2), that is, v1 = v2, which contradicts the assump-
tion IH (v1) � IH (v2). Similarly, we can show that OH (v1) ∩ OH (v2) 
= ∅ implies
OH (v1) ⊆ OH (v2). �	
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Fig. 10 Local configurations of e in Theorem 3.5

Let (G,≺) be a UPO–graph and v a vertex of G. We set

U (v) =
{

{w|w ∈ V (G), O(v) � O(w)}, if O(v) 
= ∅;
∅, otherwise;

D(v) =
{

{w|w ∈ V (G), I (v) � I (w)}, if I (v) 
= ∅;
∅, otherwise.

We define an order < on U (v) as follows. For any w1, w2 ∈ U (v), w1 < w2 if
O(w1) � O(w2). By Lemma 3.3, < is a linear order on U (v). Similarly, D(v) is a
linearly ordered set under the order that w1 < w2 in D(v) if I (w1) � I (w2).

The following theorem shows that when suitable vertices and edges are added to a
UPO–graph, the resulting graph will admit a unique extended upward planar order.

Theorem 3.5 Let (G, ≺G) be a UPO–graph. S(G) and T (G) are the sets of sources
and sinks of G, respectively. Assume that � is a directed graph obtained by adding a
new edge e to G in any one of the following ways (see Fig. 10):

(1) t(e) ∈ S(G), U (t(e)) = ∅ in (G, ≺G), and s(e) /∈ V (G);
(2) t(e) ∈ S(G), U (t(e)) 
= ∅ in (G, ≺G), and s(e) = U (t(e))−;
(3) s(e) ∈ T (G), D(s(e)) = ∅ in (G, ≺G), and t(e) /∈ V (G);
(4) s(e) ∈ T (G), D(s(e)) 
= ∅ in (G, ≺G), and t(e) = D(s(e))−.

Then, there exists a unique upward planar order ≺� on �, whose restriction is ≺G.

Proof The uniqueness follows from (U2) of ≺� . In fact, in cases (1) and (2), e =
O(t(e))− − 1, and in cases (3) and (4), e = I (s(e))+ + 1. In this way, the linear order
≺� on E(�) = E(G) 	 {e} is uniquely defined. To show the existence, it suffices to
show that ≺� is an upward planar order.

(i) First, we check (U1) for ≺� . In case (1), e ∈ I (�), so we only need to show
that e → e1 implies that e ≺� e1. In fact, e → e1, implying that there is an edge
e2 ∈ O(t(e)) such that e2 → e1 in G, so e2 ≺G e1 and hence e2 ≺� e1. Then,
e = O(t(e))− − 1 ≺� e2 ≺� e1.
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In case (2), we only need to show that e1 → e and e → e2 implying that e1 ≺� e2.
Set w = U (t(e))−. On the one hand, O(t(e)) � O(w) and e = O(t(e))− − 1
implying that O(w)− ≺� e. By e1 → e, e1 → O(w)− in G, so e1 ≺G O(w)−
and hence e1 ≺� O(w)− ≺� e. On the other hand, O(t(e)) � O(w) implying the
nonexistence of a direct path in G that starts from t(e) and ends with w, so just as
case (1), e → e2 implies that there is an edge e3 ∈ O(t(e)) such that e3 → e2 in G,
which implies that e ≺� e3 ≺� e2. In summary, e1 ≺� O(w)− ≺� e ≺� e3 ≺� e2.
The proofs in cases (3) and (4) are similar.

(i i) Under (U1), (U2) is equivalent to O(v)− = I (v)+ + 1 which is obvious from
the construction of ≺� .

(i i i) Now we are left to check (U3). If v1 = v2 or v1 ∈ V (�) − V (G) or v2 ∈
V (�)−V (G), (U3) is trivial. So we assume v1 and v2 are different vertices of G such
that I�(v1) ∩ I�(v2) 
= ∅. There are two possibilities for v1.

If e /∈ I�(v1), then I�(v1) = IG(v1). So IG(v1) ∩ IG(v2) = IG(v1) ∩ (IG(v2) 	
{e}) ⊇ I�(v1)∩ I�(v2) 
= ∅. Applying (U3) for≺G , we have IG(v1) ⊆ IG(v2). Then,
I�(v1) = IG(v1) ⊆ IG(v1) ⊆ IG(v2) ⊆ I�(v2), which implies that I�(v1) ⊆ I�(v2).

Otherwise, e ∈ I�(v1), there are three cases. In cases (1) and (2), I�(v1) =
I�(v1) = {e} and hence I�(v1) ⊆ I�(v2). In case (4), v1 = t(e) = D(s(e))−. Note
that I�(v1) = IG(v1) 	 {e}, so I�(v1) ∩ I�(v2) 
= ∅ implies that IG(v1) ∩ I�(v2) 
= ∅
or e ∈ I�(v2). In the former case, since e /∈ IG(v1), so IG(v1)∩ IG(v2) 
= ∅, which, by
applying (U3) for ≺G , implies that IG(v1) ⊆ IG(v2), and hence I�(v1) ⊆ I�(v2). In
the later case, note that e = IG(s(e))+ +1 and e /∈ I�(v2) (by v1 
= v2), so e ∈ I�(v2)

implies that IG(s(e))+ ∈ I�(v2). So IG(s(e))∩ IG(v2) 
= ∅, which, by applying (U3)

for ≺G , implies that IG(s(e)) ⊆ IG(v2), that is, v2 ∈ D(s(e)). Since v1 = D(s(e))−,
so IG(v1) ⊆ IG(v2), which implies that I�(v1) ⊆ I�(v2).

Dually, we can show that for any different v1, v2 ∈ V (G), O�(v1) ⊆ O�(v2)

provided that O�(v1) ∩ O�(v2) 
= ∅. The proof is completed. �	

4 Characterizations of POP-Graphs

In this section, we introduce some constraints for UPO-graphs and list some lemmas
which are useful for proving new characterizations of POP-graphs.

Lemma 4.1 Let G be a processive graph with a linear order ≺ on E(G). Then,

(1) for any vertices v1 
= v2 of G, I (v1) ∩ I (v2) 
= ∅ implies that v2 is processive.
(2) for any vertices v1 
= v2 of G, O(v1) ∩ O(v2) 
= ∅ implies that v2 is processive.

Proof We only prove (1). By assumption v1 
= v2 and I (v1) ∩ I (v2) 
= ∅, we know
that the degree of v2 is not equal to one. Since G is a processive graph, v2 must be
processive. The proof of (2) is similar. �	
Definition 4.2 A UPO-graph is called anchored if (A) for any different vertices v1,
v2 of G, ∅ 
= I (v1) ⊂ I (v2) implies that v1 → v2; ∅ 
= O(v1) ⊂ O(v2) implies
that v2 → v1, where v → w denotes that there is a directed path starting from v and
ending with w.
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In Sect. 6, we will show that any UPO-graph has an upward planar drawing, which
is called the geometric realization of the UPO-graph. In the geometric realization of an
anchored UPO-graph, all sources and sinks are drawn on the boundary of the external
face; see Remark 6.4 for explanation.

Lemma 4.3 Let (G, ≺) be a POP-graph. Then, ≺ satisfies (A).

Proof Weonly prove the first part of (A). The proof of the second part is similar andwe
omit it here. Let v1 
= v2 be two vertices ofG, such that I (v1) ⊂ I (v2) and I (v1) 
= ∅.
Then, I (v1) ∩ I (v2) 
= ∅, and therefore by Lemma 4.1 (1), v2 is processive.

Take e ∈ I (v1) ⊂ I (v2). Then, I (v2)− ≺ e ≺ I (v2)+, and hence I (v2)− ≺ e ≺
O(v2)

−, where the last equality follows from (P1) and the fact I (v2)+ → O(v2)
−.

By (P2), I (v2)− → O(v2)
− implies that either I (v2)− → e or e → O(v2)

−. If
I (v2)− → e, then I (v2)+ → e, and by (P1), I (v2)+ ≺ e, a contradiction. Thus, we
must have e → O(v2)

−, which implies that v1 → v2. �	
Lemma 4.4 Let (G, ≺) be a UPO–graph. If G is a processive graph, then (A) is
equivalent to the following condition:

(U4) for any processive vertex v of G, I (G) ∩ O(v) = ∅ and O(G) ∩ I (v) = ∅.
Proof (A) �⇒ (U4). We prove this by contradiction. Suppose there is a processive
vertex v of G such that I (G) ∩ O(v) 
= ∅. Take i ∈ I (G) ∩ O(v) and set w = s(i).
Clearly, by definition, O(w) = {i}. Then, O(w) ⊂ O(v) and O(w) 
= ∅. Thus, by
(A) we have v → w, which contradicts i ∈ I (G). Similarly, we can prove that for
any processive vertex v of G, O(G) ∩ I (v) = ∅.

(U4) �⇒ (A). Let v1, v2 be two different vertices of G with I (v1) ⊂ I (v2) and
I (v1) 
= ∅, we want to prove that v1 → v2. First, I (v1) ⊂ I (v2) and I (v1) 
= ∅ imply
that I (v1) ∩ I (v2) = I (v1) 
= ∅, and hence by Lemma 4.1 (1), v2 is a processive
vertex.

Next, we claim that v1 must not be a sink. If not, by the fact that G is a processive
graph, I (v1) = {e} ⊆ I (G), which implies that I (G)∩ I (v2) ⊇ {e} 
= ∅, contradicting
(U4). So v1 is a processive vertex.

Now by (U2), I (v1) ⊂ I (v2) implies that I (v2)− ≺ O(v1)
− = I (v1)+ + 1 


I (v2)+. If O(v1)
− = I (v2)+, then v1 → v2 and we complete the proof. Otherwise,

I (v2)− ≺ O(v1)
− ≺ I (v2)+, which implies that I (w1) ∩ I (v2) 
= ∅, where w1 =

t(O(v1)
−). Clearly, v1 → w1 and by (U3), I (w1) ⊂ I (v2). Ifw1 → v2, then v1 → v2

and we complete the proof. Otherwise, note that O(v1)
− ∈ I (w1) 
= ∅, similar as v1,

w1 must not be a sink, so we can repeat the above procedure to find w2 → w3 → · · · ,
until we find a wk (k ≥ 1) such that wk → v2. Since G has only finite vertices and
the above procedure never reaches a sink, so such a wk must exist, and hence we have
v1 → v2.

Similarly, we can prove that O(v1) ⊂ O(v2) and O(v1) 
= ∅ imply v2 → v1. �	
Lemma 4.5 Let G be a processive graph and ≺ a linear order on E(G). If ≺ satisfies
(U1) and (U2), then the following conditions are equivalent:

(˜P2) if e1 ≺ e2 ≺ e3 and t(e1) = s(e3), then either e1 → e2 or e2 → e3.
(P3) for any two vertices v1 and v2, I (v1) ∩ I (v2) 
= ∅ implies that v1 → v2 and

O(v1) ∩ O(v2) 
= ∅ implies that v2 → v1.
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Proof (˜P2) �⇒ (P3). We only prove the first part of (P3), the proof of the second part
is similar. First by Lemma 4.1 (1), I (v1) ∩ I (v2) 
= ∅ implies that v2 is processive.

Now take e ∈ I (v1) ∩ I (v2), then I (v2)− ≺ e ≺ I (v2)+ ≺ O(v2)
−, where the last

equality follows from (U2). Clearly, t(I (v2)−) = v2 = s(O(v2)
−), then by (˜P2) we

have either I (v2)− → e or e → O(v2)
−. If I (v2)− → e, then I (v2)+ → e, which

contradicts e ≺ I (v2)+ and (U1). So we must have e → O(v2)
−, which implies that

v1 → v2.
(P3) �⇒ (˜P2). Assume e1 ≺ e2 ≺ e3 and v = t(e1) = s(e3). By (U2), E(v) =

I (v) 	 O(v). Then, e2 ∈ [e1, e3] ⊆ E(v) implies that either e2 ∈ I (v) or e2 ∈ O(v).
If e2 ∈ I (v), then e2 ∈ I (t(e2)) ∩ I (v) 
= ∅. So by (P3), we have t(e2) → v, hence
e2 → e3. Similarly, e2 ∈ O(v) implies that e1 → e2. �	

Now we give several characterizations of POP-graphs.

Theorem 4.6 Let G be a processive graph with a linear order ≺ on E(G) satisfying
(P1). Then, the following statements are equivalent:

(1) (G, ≺) is a POP-graph.
(2) ≺ satisfies (U2) and (P3).
(3) (G, ≺) is an anchored UPO–graph.
(4) ≺ satisfies (U2), (U3) and (U4).

Proof (1) ⇐⇒ (2). By Lemma 4.5 and the fact that (P2) ⇐⇒ (˜P2), we see that
(P2) ⇐⇒ (P3) under (U1) and (U2). Since ≺ satisfies (P1) = (U1), then to prove
(1) ⇐⇒ (2) we only need to prove (P1) + (P2) �⇒ (U2).

In fact, let v be a processive vertex of G, e1 = I (v)+ and e2 = O(v)−. Clearly,
e1 → e2, and by (P1), e1 ≺ e2. Now we prove e2 = e1 + 1 by contradiction. Suppose
there exists an edge e with e1 ≺ e ≺ e2, then by (P2) we have either e1 → e or
e → e2. If e1 → e, then there must exist an edge e′ ∈ O(v) such that e′ → e or
e′ = e, which follows e′ 
 e by (P1). Hence, e′ ≺ e2, which contradicts the facts that
e′ ∈ O(v) and e2 = O(v)−. Similarly, e → e2 also leads a contradiction.

(1) �⇒ (3). We have proved (P1) + (P2) �⇒ (U2) and Lemma 4.3 shows that
(P1)+(P2) �⇒ (A); thus, to prove (1) �⇒ (3),weonlyneed toprove (P1)+(P2) �⇒
(U3). By (1) ⇐⇒ (2), it suffices to show (P3) �⇒ (U3).

We prove this by contradiction. Suppose I (v1) ∩ I (v2) 
= ∅ and I (v1) � I (v2).
On the one hand, by (P3), I (v1) ∩ I (v2) 
= ∅ implies v1 → v2. On the other hand,
I (v1) ∩ I (v2) 
= ∅ implies that I (v1) ∩ I (v2) 
= ∅. Assume I (v1) = [e1, e2] and
I (v2) = [h1, h2]. Since I (v1) � I (v2), so we have either e1 ≺ h1 ≺ e2 or e1 ≺
h2 ≺ e2. Both cases imply I (v2) ∩ I (v1) 
= ∅; then, by (P3), we have v2 → v1, a
contradictionwith the acyclicity ofG. The second part of (U3) can be proved similarly.

(3) �⇒ (2). This is a direct consequence of the fact that (U3) + (A) �⇒ (P3).
(3) ⇐⇒ (4). This is a direct consequence of Lemma 4.4. �	

5 CPP Extension

In this section, we introduce the notion of a CPP extension for a directed graph and
show that CPP extensions are naturally in bijective with upward planar orders.
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Definition 5.1 A canonical processive planar extension, or CPP-extension, of a
directed graph G is a POP-graph (�,≺) together with an embedding φ : G → �,
such that

(E1) φ0(V (G)) = V (�) − (S(�) 	 T (�));
(E2) |E(�)| = |E(G)| + |S(G)| + |T (G)|, where |X | denotes the cardinality of X ;
(E3) I (φ0(v)) ∩ O(φ0(w)) = ∅ for any v ∈ S(G) and w ∈ T (G);
(E4) e ∈ E(�) − (φ1(E(G)) ∪ I (�) ∪ O(�)) implies that either O(s(e))− ≺ e ≺

O(s(e))+ or I (t(e))− ≺ e ≺ I (t(e))+.

Clearly, G must be acyclic if it has a CPP extension. Any CPP-extension of G is
obtained from G by adding some new vertices and edges, with local configurations
as listed in Fig. 10. Since � is processive, (E1) says that the vertices of G exactly
correspond to the processive vertices of �. (E2) says that the number of newly added
edges is exactly the number |S(G)| + |T (G)| of sources and sinks, and (E3) says that
any newly added edge should not connect a source and a sink of G. (E4) says that if a
newly added edge is neither an input nor output edge of �, then its local configuration
should be the case (2) or (4) in Fig. 10.

Remark 5.2 In general, CPP-extensions may not exist, and it may not be unique even
if it exists, while for a UPO–graph, there exists a unique compatible CPP-extension;
see Theorem 5.5.

The following lemma characterizes the newly added edges.

Lemma 5.3 Let G be an acyclic directed graph andφ : G → (�, ≺) aCPP-extension.
Then,

⊔

v∈S(G)

I (φ0(v))
⊔ ⊔

w∈T (G)

O(φ0(w)) = E(�) − φ1(E(G)),

and |I (φ0(v))| = 1 for any v ∈ S(G), and |O(φ0(w))| = 1 for any w ∈ T (G).

Proof Assume S(G) = {v1, . . . , vm} and T (G) = {w1, . . . , wn}. By (E1),
φ0(vk) (1 ≤ k ≤ m) and φ0(wl) (1 ≤ l ≤ n) are all processive vertices of �. Thus,
I (φ0(vk)) (1 ≤ k ≤ m) and O(φ0(wl)) (1 ≤ l ≤ n) are not empty. Clearly,

⋃

1≤k≤m

I (φ0(vk))
⋃ ⋃

1≤l≤n

O(φ0(wl)) ⊆ E(�) − φ1(E(G)),

and I (φ0(vk))∩ I (φ0(vl)) = ∅ for any 1 ≤ k < l ≤ m and O(φ0(wk))∩O(φ0(wl)) =
∅ for any 1 ≤ k < l ≤ n. Then , by (E2) the cardinal number of E(�) − φ1(E(G)) is
m + n and by (E3) the cardinal number of

⋃

1≤k≤m I (φ0(vk))
⋃ ⋃

1≤l≤n O(φ0(wl))

is also m + n. So we have
⊔

1≤k≤m I (φ0(vk))
⊔ ⊔

1≤l≤n O(φ0(wl)) = E(�) −
φ1(E(G)) and |I (φ0(vk))| = 1 (1 ≤ k ≤ m), |O(φ0(wl))| = 1 (1 ≤ l ≤ n).

�	
Let ≺G be the linear order on E(G) induced from ≺. The following lemma is a

direct consequence of (E4), which says that some properties of an edge of G with
respect to ≺G are preserved by the embedding φ : G → �.
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Lemma 5.4 Let G be an acyclic directed graph and φ : G → (�,≺) a CPP-extension
of G. For any edge e of G, we set e′ = φ1(e). Then, we have:

(1) e = I (t(e))− in (G, ≺G) ⇐⇒ e′ = I (t(e′))− in (�,≺);
(2) e = I (t(e))+ in (G, ≺G) ⇐⇒ e′ = I (t(e′))+ in (�,≺);
(3) e = O(s(e))− in (G,≺G) ⇐⇒ e′ = O(s(e′))− in (�,≺);
(4) e = O(s(e))+ in (G,≺G) ⇐⇒ e′ = O(s(e′))+ in (�,≺).

The following result shows that for a UPO-graph, there is a CPP-extension uniquely
determined by its upward planar order.

Theorem 5.5 Let (G, ≺) be a UPO–graph. Then, there exists a unique CPP-extension
φ:G → (G,≺) such that for any e1,e2 ∈ E(G), e1 ≺ e2 implies that φ1(e1)≺φ1(e2).

Proof We construct a POP-graph (G,≺) by adding vertices and edges to (G,≺) just
in the ways of Theorem 3.5.

(1) For each v ∈ S(G), ifU (v) = ∅, we add to G a source v− and an input edge ev

with s(ev) = v−, t(ev) = v. Otherwise, we add to G an edge ev with s(ev) = U (v)−,
t(ev) = v. For both cases, we set the order ev = O(v)− − 1.

(2) For each v ∈ T (G), if D(v) = ∅, we add to G a sink v+ and an output edge
ev with s(ev) = v, t(ev) = v+. Otherwise, we add to G an edge ev with s(ev) = v,
t(ev) = D(v)−. For both cases, we set the order ev = I (v)+ + 1.

Clearly, the order of adding edges is unimportant and the above construction
produces a unique processive graph G, a unique linear order ≺ on E(G) and a
unique embedding φ : G → G which preserves the orders on edges and satisfies
(E1), (E2), (E3), (E4). Iteratively applying Theorem 3.5, we see that (G,≺) is a
UPO–graph.

To show that (G,≺) is a POP-graph, by Theorem 4.6, it suffices to show that (G,≺)

satisfies (U4). We prove this by contradiction. Suppose there exists a processive vertex
v of G with I (G) ∩ O(v) 
= ∅. Clearly, v ∈ V (G). Take an edge e ∈ I (G) ∩
O(v) and set w = t(e). By the construction of (G,≺), e ∈ I (G) implies that w ∈
S(G),U (w) = ∅ in (G,≺), e = ew, and O(w)− = e + 1. Then, e ∈ O(v) implies
that O(v)−≺O(w)−
O(v)+. If O(v)+ = O(w)−, then v = w, and hence e ∈
O(v) ∩ I (v) in (G,≺), which contradicts the fact that ≺ satisfies (U2). So we must
have O(v)−≺O(w)−≺O(v)+, which means O(w) ∩ O(v) 
= ∅ in (G,≺). Then, by
(U3) for ≺, we have O(w) ⊂ O(v) in (G,≺), which, by the construction of (G,≺),
implies thatO(w) ⊂ O(v) in (G,≺), that is,v ∈ U (w) 
= ∅ in (G,≺), a contradiction.
Similarly, we can prove that for any processive vertex v of G, O(G) ∩ I (v) = ∅.

Now we show the uniqueness of the CPP extension. Suppose ϕ : G → (G1,≺1)

is a CPP-extension of G that preserves the upward planar orders. By Lemma 5.3, for
any e ∈ E(G1) − ϕ1(E(G)), there exists a unique v ∈ S(G) 	 T (G), such that {e} =
I (ϕ0(v)) or {e} = O(ϕ0(v)). Since (G1,≺1) is a UPO–graph, then e = O(t(e))− +1
or e = I (s(e))+ + 1. Comparing to the construction of (G,≺), it is not difficult
to see that there exists a canonical order-preserving isomorphism λ : G1 → G such
that φ = λ ◦ ϕ. Thus, all order-preserving CPP-extensions of (G,≺) are canonically
isomorphic to each other. �	

Conversely, a CPP extension always induces an upward planar order.
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Proposition 5.6 AnyCPP-extension of an acyclic directed graph G induces an upward
planar order on E(G).

Proof Let φ : G → (�,≺) be a CPP-extension of G. By Proposition 3.4, the induced
order ≺G is a linear order satisfying (U1) and (U3). To show that ≺G satisfies (U2),
by (U1), it suffices to show that for any processive vertex v of G, I (v)+ +1 = O(v)−,
which follows from Lemma 5.4. �	

As a direct consequence of Theorem 5.5 and Proposition 5.6, the following is our
main result in this section.

Theorem 5.7 For any acyclic directed graph G, there is a bijection between the set of
upward planar orders and the set of CPP-extensions.

6 Justifying UPO-Graph

In this section, we will prove our main result, Theorem 6.1, which shows that upward
planar orders indeed characterize upward planarity.

Theorem 6.1 Any UPO–graph has a unique upward planar drawing up to planar
isotopy, and conversely, there is an upward planar order on E(G) for any upward
plane graph G.

The first part follows from Theorems 2.5 and 5.7. For the converse part, we need
the following proposition, which is a geometric counterpart of Theorem 5.5.

Proposition 6.2 Let G be an upward plane graph. Then, there exist a PPG � and a
(geometric) embedding φ : G → �, such that

(1) φ0(V (G)) = V (�) − (S(�) 	 T (�));
(2) |E(�)| = |E(G)| + |S(G)| + |T (G)|;
(3) for any v ∈ S(G) and w ∈ T (G), I (φ0(v)) ∩ O(φ0(w)) = ∅;
(4) e ∈ E(�) − (φ1(E(G)) ∪ I (�) ∪ O(�)) implies that either O(s(e))− < e <

O(s(e))+ or I (t(e))− < e < I (t(e))+, where the linear orders are given by the
polarization of �.

Proof We want to extend G into a PPG. Let v1, . . . , vn be an ordered list of V (G),
with (X1,Y1), . . . , (Xn,Yn) as their coordinates, such that Y1 ≥ . . . ≥ Yn . Then,
G is contained in the box D = [K − 1, L + 1] × [Y1 + 1,Yn − 1], where K =
min{X1, . . . , Xn}, L = max{X1, . . . , Xn}.

Assume T (G) = {vα1, . . . , vαμ} with 1 ≤ α1 < . . . < αμ ≤ n. Clearly, vn = vαμ

is a sink. We will inductively eliminate all the sinks ofG by adding suitable new edges
and vertices.

First, we add a vertex v+
n and an edge h = [vn, v+

n ] to G, where the coordinate
of v+

n is (Xn,Yn − 1) and h = [vn, v+
n ] is the segment with s(h) = vn , t(h) = v+

n .
Denote the resulting upward plane graph as G1.

Then, we move to vαμ−1 . If Yαμ−1 = Yαμ , just as above, we add a vertex v+
αμ−1

and

an edge h1 = [vαμ−1 , v
+
αμ−1

] to G1. Otherwise, Yαμ−1 > Yαμ . Then, we consider the
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Fig. 11 Drawing of h1 in
subcase (1.1)

vn

v+n

vαµ−1

e1

e2

Yαµ−1

Yαµ−1 − ε

Yn − 1

v+αµ−1

e0

er = h

h1

horizontal line y = Yαμ−1 and the set of its intersection points withG1. There are three
cases: (1) there is an intersection point on the left of vαμ−1 ; (2) there is an intersection
point on the right of vαμ−1 ; and (3) vαμ−1 is the unique intersection point of the line
with G1.

Case (1): We consider the strip of the plane delimited by horizontal lines y = Yαμ−1

and y = Yαμ−1 − ε, where ε > 0 is small enough so that the strip contains no vertices
in its interior, and the strip is divided by the edges of G1 into (at least two) connected
regions bounded by vertically monotonic curves.

Let e0 be the edge of G1 such that it is on the boundary of the region that contains
vαμ−1 and on the left of vαμ−1 (the assumption in (1) guarantees the existence of e0).
Then, either e0 = h, or there exists a unique directed path e0e1e2 · · · er , such that
ei = O(s(ei ))+ for all 1 ≤ i ≤ r and t(er ) = v+

n (equivalently, er = h), where the
existence and the uniqueness of such path are guaranteed by the ordering of T (G) and
the requirement ei = O(s(ei ))+, respectively. Then, we have two subcases.

Subcase (1.1): For all 0 ≤ i ≤ r , ei = I (t(ei ))+ with respect to the polarization
of G.

In this case, we add to G1 a vertex v+
αμ−1

with vertical ordinate Yn − 1, on the right

of and close enough to v+
n ; add an edge h1 with s(h1) = vαμ−1 , t(h1) = v+

αμ−1
, and

draw it into G1 as a monotonic curve on the right of and close enough to the directed
path e0e1 · · · er , see Fig. 11.

Subcase (1.2): There exists some i ∈ [0, . . . , r − 1] such that ei < I (t(ei ))+, and
e j = I (t(e j ))+ for all j < i .

In this case, we add to G1 an edge h1 with s(h1) = vαμ−1 , t(h1) = t(ei ), and draw
it into G1 as a monotonic curve on the right of and close enough to e0e2 · · · ei ; see
Fig. 12. Clearly, ei < h1 < I (t(ei ))+ with respect to the polarization of the resulting
upward plane graph.

Case (2): This case is similar to Case (1), and we omit it here.
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Fig. 12 Drawing of h1 in case
(1.2)

vαµ−1
Yαµ−1

Yαµ−1 − ε

e0

e1

e2

ei

ei+1

h1

Fig. 13 One possible subcase of
case (3) vαµ−1

Yαµ−1

Yk

· · ·

Yαµ−1 − ε

vk

Yn − 1

e0

e1

e2

· · ·

vn

v+n

er = h

v+αµ−1

h1

Case (3): In this case, since Yαμ−1 > Yαμ , so there must exist a source vk ∈ V (G)

with αμ−1 < k < n such that there is no edge of G intersecting with the interior of
the horizontal strip delimited by horizontal lines y = Yαμ−1 and y = Yk . Take e0 =
[vαμ−1, vk] the segment with s(e0) = vαμ−1 and t(e0) = vk . Then, we reduce this case
to the above case (1) or case (2) of the auxiliary upward plane graph G ′

1 = G1 +{e0}.
Figure 13 shows one possible subcase of case (3), where e0 is just an auxiliary edge
for the drawing of h1 and is not a really added edge of G1.

Repeating the above procedure successively for vαμ−2 , vαμ−3 , . . . , vα1 , we can elim-
inate all the sinks. Similarly, we can eliminate all the sources. As a result, we get a PPG
� boxed in D and with G as a subgraph. By the construction, the resulting embedding
ψ : G → � satisfies all the required conditions listed in the proposition. The proof is
completed. �	

By Theorem 2.5, the (geometric) embedding φ : G → � in Proposition 6.2 induces
a CPP-extension of G, which, by Proposition 5.6, implies the converse part of Theo-
rem 6.1.

Remark 6.3 Note that the extension ofG in Proposition 6.2 is not unique, so the upward
planar order on E(G) is not necessarily unique.
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Remark 6.4 Note that if (G,≺) is an anchored UPO-graph, then for any v ∈ S(G),
U (v) = ∅, and for any v ∈ T (G), D(v) = ∅. By the construction in Theorem 5.5, the
CPP extension φ : G → (G,≺) satisfies E(G) − E(G) = I (G) 	 O(G). Therefore,
in the geometric realization of (G,≺), all sources and sinks of G are drawn on the
boundary of the external face.

Using a fundamental result independently due to Fáry [4] andWagner [12], we may
obtain a combinatorial characterization of (non-directed) planar graphs.

Corollary 6.5 A (non-directed) graph G has a planar drawing if and only if there
exists an orientation on G and an upward planar order on E(G) with respect to the
orientation.

Proof We need only to show the “only if” part, and the other direction is obvious.
We first claim that any simple planar graph � has an upward drawing. By Fáry-

Wagner theorem, there exists a planar drawing of � such that all edges are straight
line segment. We may rotate the plane an appropriate angle, so that any horizontal
line contains at most one vertex of �. This can be done since � has only finitely
many vertices, and hence only finitely many straight lines will contain more than one
vertices. Then, there exists a (unique) orientation of � making the resulting drawing
an upward planar drawing.

Now the proof follows from the easy fact that a graph G has a planar drawing if
and only if the associated simple graph of G has a planar drawing. �	
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